0=-16t^2+21-6

Simple and best practice solution for 0=-16t^2+21-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+21-6 equation:



0=-16t^2+21-6
We move all terms to the left:
0-(-16t^2+21-6)=0
We add all the numbers together, and all the variables
-(-16t^2+21-6)=0
We get rid of parentheses
16t^2-21+6=0
We add all the numbers together, and all the variables
16t^2-15=0
a = 16; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·16·(-15)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*16}=\frac{0-8\sqrt{15}}{32} =-\frac{8\sqrt{15}}{32} =-\frac{\sqrt{15}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*16}=\frac{0+8\sqrt{15}}{32} =\frac{8\sqrt{15}}{32} =\frac{\sqrt{15}}{4} $

See similar equations:

| X2+10x=42 | | x/7(5x–2)=6(6x–1 | | 9/315=x/205 | | -3(6-4x)=-114 | | 8(8-5b)=264 | | 0=16t^2+21t-6 | | 6x+3(5x+4)=12(2x-5) | | 0.3(40)+0.15x=0.1(40)+0.2x | | 5x=2x+5x-3 | | .44x+0.2x=87 | | ´12-(5+x)=5x+7 | | 69=4a+49 | | (3x-4)-(8x+7)=35 | | 1/4z+8=10 | | 11=-16t^2+21t+5 | | n/10+5=8 | | 2+4/5b=9/10b | | 8x-35=29 | | 96n+2=80n-3 | | 2x-34=30 | | F(x)=99+30x | | -2/3r+2r=1/2r+5/2 | | xx2=0.4 | | 13x+12+2x+3=x | | -24=16+14n | | (3x+1)(25)=970 | | 2x-1÷x+2=5/7 | | 3a-9=42 | | 5x-3-x=14-x | | 3x+70-7=18 | | 2x-34=34 | | 5x+10=6+3(2x-1) |

Equations solver categories